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SUMMARY

A framework for designing control systems directly from
substructure models and uncertainties is proposed. The
technique is based on combining a set of substructure
robust control problems by an interface sti�ness matrix
which appears as a constant gain feedback. Variations
of uncertainties in the interface sti�ness are treated as a
parametric uncertainty. It is shown that multivariable
robust control can be applied to generate centralized
or decentralized controllers that guarantee performance
with respect to uncertainties in the interface sti�ness,
reduced component modes and external disturbances.
The technique is particularly suited for large, complex,
and weakly coupled exible structures.

1 Introduction

1.1 Problem Motivation

The motivation for studying this problem can be ex-
plained by considering the docking of the Shuttle with
a space station as shown in �gure 1. For the purpose
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Figure 1: Docking/berthing of Shuttle and Station

of this study, we de�ne the process of sti�ness coupling
between the Space Shuttle and station as docking. It
should be noted that the coupling process is much
more complicated than is assumed in this study, see
for example reference [1, 2, 3]. During docking or
joining of structures in space, a signi�cant problem to
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be considered is the stabilization of the coupled system
before, during, and after the docking of the two systems.
An additional complication faced by the engineer is the
di�culty in accurately predicting the dynamics of the
coupled system because of the complexity in the physics
of the interface or docking mechanism.

A further motivation for this work arises from
the peculiar problem faced by the engineer in the
development and validation of design models for a large
exible structure such as the space station. Due to
the 1-g testing environment, it may not be possible
to test the assembled structure on the ground so that
only components can be tested. This means that only
models of substructures can be re�ned directly using
experimental data. However, component testing can be
used to develop substructure uncertainty models arising
from inadequate or incomplete component modes and
inconsistencies in the substructure boundary condi-
tions.

1.2 Relation to Previous Work

From the viewpoint of large scale systems theory many
relevant results exist. Early results in [4] derive con-
ditions for the existence of robust decentralized con-
trollers for a general linear, time-invariant, intercon-
nected subsystems. The controllers are assumed decen-
tralized in the sense of local output feedback structure.
Stability robustness is considered but a quantitative
treatment of robustness is not given. The extension
in [5] of the existence conditions to large exible space
structures are for colocated sensors and actuators. The
results are further relaxed in [6] so that collocated
sensors and actuators are not necessary. The existence
conditions are used to guide the choice of actuators
and sensors needed which is then followed by parameter
optimization to obtain controller gains. Another decen-
tralized controller con�guration which is closely related
to the class of dissipative controllers are developed
for large exible space structures [7, 8]. The results
in [9] incorporates subsystem disturbance/performance
variables and modeling uncertainties for general inter-
connected system. Controller existence conditions are
derived and a discussion of the e�ect of structured
uncertainty on stability robustness is given. It is
however not clear how optimal robust controllers can
be obtained.

From the viewpoint of structural modeling, several
recent methods for decentralized control of large exible
structures, that are based on �nite-elements and com-
ponent modes synthesis exists. A technique whereby
substructure controllers for each structural components



are independently designed and then synthesized is
given in [10]. The independent substructure controller
designs are dependent on approximating the interface
boundary conditions and component modeling of its
adjacent components. To improve the approximation,
internal boundary motion is minimized by feedback
control. This method in general do not guarantee
nominal stability and the report cites robustness issues
as a current research direction, clearly recognizing in-
evitable component modeling errors. A substructure
controller synthesis technique is proposed in [11, 12]
whereby the controller is an assembly of subcontroller
designs based on individual uncoupled substructures.
However, as in [10], closed-loop stability is not guar-
anteed when the substructures are connected. This is
not unexpected because the interface sti�ness coupling
is not taken into account in the synthesis. More
recently, a substructure-based controller design ap-
proach has been proposed [13]. The basic idea is to
combine a set of optimal component controllers which
are designed independently. Recognizing the inuence
of neighboring substructures, the substructure plant
used in the control design is appended by a simpli�ed
model of neighboring substructure dynamics. While
this approach is computationally e�cient, closed-loop
stability is not guaranteed in general. In summary,
note that since all structural models or for that matter,
since all mathematical models are approximations of
real physical systems, controllers that guarantee robust
stability have a clear advantage over controllers that do
not.

Although the previous work just described by no
means represent all pertinent past results in the open
literature, several issues appear to remain unresolved.
Among these that are addressed in this paper include:
accounting for component modeling errors, variations
and/or undermodeling or modeling errors in the sub-
structure interface, and performance robustness. As
will be evident, the proposed framework amounts to an
integration of well established results in substructure
modeling and recent advances in multivariable robust
control. The advantages in this synergism include: (1)
nominal model and uncertainties at the substructure
level can be incorporated directly for control analysis
and design, and (2) a class of problems involving
variable sti�ness coupling between various structural
systems can be treated conveniently. This approach
allows substructure (or component mode synthesis)
dynamic models (see for example [14], [15], [16], [17])
to be used directly in the analysis and design of control
systems. Perhaps the major advantage in the above
approach is the reduction in the dependence on on-orbit
system identi�cation testing of the assembled structure
by an easier and less costly testing of substructures on
the ground.

1.3 Organization of Paper

Section 2 outlines briey the dynamic model of sub-
structures which is then used in section 3 to de�ne
the uncoupled substructure robust control problem (for
simplicity sake the acronym SRCP will be used) in
the framework of modern multivariable robust con-
trol. A novel element in sections 2 and 3 is the
inclusion of substructure boundary forces/moments as
external disturbances on the substructure, and the
displacement and rotations at the substructure bound-
aries as substructure output variables. The nominal

substructure model and the associated uncertainties
are de�ned along with the input and output control
variables for the substructure. In section 4, a model
for sti�ness coupling is introduced and substructure
interface sti�ness matrix is de�ned. This interface
sti�ness matrix can be viewed as a transfer function
matrix which maps the displacements and rotations
at the interface to the corresponding interface forces
and moments. Section 4 shows how displacements and
rotations at the interface can be realized into a block
diagram form suitable for connecting subsystems. For
the case where the substructure interface involves a
variable and or unknown sti�ness coupling, the interface
conditions can be treated as a parametric uncertainty in
a multivariable robust control framework. In principle,
this interface block could be extended to include certain
or uncertain dynamic models. In section 5, the control
problem for the connected system is de�ned by connect-
ing the SRCP using the substructure interface block. To
demonstrate the utility of the ideas introduced in this
paper, a sequence of control design examples involving
controller designs for two connected exible beams are
outlined in section 6 and section 7 contains a few
concluding remarks.

2 Substructure Model

The following formulation is discussed in more detail
in [15, 16]. Let M (i) and K(i) denote the mass and
sti�ness matrices corresponding to the i-th substructure
so that the �nite element model is given by

M (i)��(i)+K(i)�(i) = D(i)
u u(i)+D(i)

I g(i)+D(i)
r r(i)(1)

where �(i) denote the physical nodal displacement vec-

tor. For substructure i, the matrices D(i)
u , D(i)

I , and

D
(i)
r , denote respectively the force/moment distribution

matrix for control input u(i), the substructure interface
input distribution matrix for interface forces/moments
g(i), and the force/moment distribution matrix for
external command and/or disturbances r(i). It is im-
portant to note that in component mode synthesis, the
interface forces and moments are not included or carried
through in the substructure equations because they are
absorbed in the synthesis process as internal forces and
moments. However, the explicit consideration of these
internal variables at the substructure interfaces is a key
ingredient in the SRCP formulation.

The substructure eigenvalue problem for substruc-
ture i, for an assumed set of boundary conditions, is
given by

K(i) 
(i)
j = �jM

(i) 
(i)
j (2)

where j denotes the structural mode number. Using
only a subset of substructure or component modes 	(i)

where

�(i) = 	(i)�(i) +	
(i)
tr �

(i) (3)

the Ritz approximation leads to the substructure re-
duced modal model,

��(i) + 
(i)2�(i) = 	(i)TD(i)
u u(i) +	(i)TD

(i)
I g(i)

+ 	(i)TD(i)
r r(i) (4)



where �(i) is the modal amplitude vector, and 
(i)2 =

diag(!(i)2

1 ; . . . ; !(i)2

n ). The columns of 	(i)
tr denote trun-

cated modeshapes for substructure i.
In general, the synthesized component modes

model do not lead to a model with su�cient �delity
when only the truncated sets of \normal" component
modes (represented by 	(i) in Eq.(3)) are used in the
synthesis. Therefore, the reduced set of \normal"
component modes are typically augmented with \con-
straint" modes. For a more comprehensive treatment
on adding constraint modes to normal modes, the text-
book [15] is recommended. Indeed, the selection of a
subset of component modes or assumed shape functions
is an important element in substructure synthesis and
the work in [17, 13] is recommended for a more detail
discussion.

In the sections to follow, the e�ect of the truncated

substructure modes, 	(i)
tr �

(i) in Eq.(3) (i.e. the Ritz
approximation error), are included as additive uncer-
tainties about the nominal model. The closed-loop
robustness is partly with respect to this model error. It
is signi�cant to note that if the entire set of component
modes span the entire substructure con�guration vector
space, a Ritz approximation plus the additive uncer-
tainty will be su�cient to span this vector space. An
implication of this truth is that potential spillover into
the truncated modes can be properly accounted for in
the control design although closed-loop performance is
limited by the inaccurate set of reduced normal modes.

The displacement and velocity outputs for sub-
structure i are given by

y(i) =

(
y
(i)
d

y
(i)
v

)
=

"
D

(i)T
d �(i)

D
(i)T
v

_�(i)

#
(5)

�

"
D

(i)T
d 	(i)

D
(i)T
v 	(i)

#�
�(i)

_�(i)

�
(6)

The displacement and rotation at the interface for
substructure i are

�
(i)
b = D

(i)T
b �(i) (7)

� D
(i)T
b 	(i)�(i) (8)

Each column ofD
(i)
b corresponds to the individual inter-

face degree of freedom (DOF) location for substructure
i. The outputs of interest are written as

e(i) =
h
D

(i)T
ed D

(i)T
ev

i� �(i)

_�(i)

�
(9)

�
h
D

(i)T
ed 	(i) D

(i)T
ev 	(i)

i�
�(i)

_�(i)

�
(10)

In the �eld of structural dynamics, the main pur-
pose of substructure modeling via component mode
synthesis appears to be the prediction of frequencies
and modeshapes and possibly damping for the as-
sembled structure. The modular nature of this ap-
proach also allows independent structural analysis and
re�nement and component testing even by separate
organizations. Although much attention has been given
to the basic problem of component mode selection,
issues pertaining to the use of substructure models for
controller design has not been fully addressed. As a

result, two problems that are addressed in this study are
substructure model reduction errors and the modeling
of variable or uncertain substructure interface both in
the context of performance robustness of closed-loop
coupled substructures.

3 Uncoupled SRCP

De�ne the states for substructure i as

x(i) =
�
�
(i)
1 _�(i)1 . . . �

(i)
n _�(i)n

�T
(11)

The substructure state equations can be written as

_x(i) = A(i)x(i) +B
(i)
1 g(i) +B

(i)
2 r(i) +B

(i)
3 u(i) (12)

The coe�cient matrices, B
(i)
1 , B

(i)
2 , and B

(i)
3 , are state

space forms of D(i)
u , D(i)

I , and D(i)
r , in Eq.(1). The dis-

placement measurement, pointing error, and interface
boundary DOF can be written in terms of substructure
state vector,

y(i) = C
(i)
3 x(i) (13)

e(i) = C
(i)
2 x(i) (14)

�
(i)
b = C

(i)
1 x(i) � zi (15)

Similarly, the coe�cient matrices, C
(i)
3 , C

(i)
2 , and C

(i)
1 ,

are the corresponding state space forms of the relevant
outputs in Eqs.(5) to (10). Denote the transfer function
matrix of substructure i as

G(i) =

�
A(i) B(i)

C(i) 0

�
(16)

where

B(i) =
h
B

(i)
1 B

(i)
2 B

(i)
3

i
; C(i) =

2
64 C

(i)
1

C
(i)
2

C
(i)
3

3
75(17)

The transfer function matrix of the substructure, G(i),
is then appended with weighting matrices that de�ne
substructure closed-loop performance and uncertainties
peculiar to that substructure to form augmented sub-
structure plant, P(i).

For the special case where the substructures are
uncoupled (for example at the onset of docking), Figure
2 shows the subsystem plants, P1 and P2, substructure
controllers, k1 and k2, and uncertainties associated
with each substructure, �1 and �2. Although the
following development is based on a system with only
two substructures, it should be clear that the method-
ology presented applies also to a system with arbitrary
number of substructures. The subsystem plants con-
sist of substructure models which are augmented with
performance, disturbance and uncertainty weighting
matrices that are used to de�ne the substructure control
problem. The uncertainty blocks are assumed to be
normalized to unity in terms of their maximum singular
values (see for example [18]). The structure in the
uncertainty block is problem dependent and is selected
by the engineer.
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Figure 2: Uncoupled SRCP for two substructures

The uncoupled SRCP can be described as seeking
a controller k(i) which maintains stability and perfor-
mance for the set of all closed-loop systems de�ned
by the given uncertainty set �i. The performance
considered is de�ned in terms of a frequency weighted
H1 norm, of the transfer function matrix from the
disturbances, r1, r2 to outputs of interest e1, e2. The
above form of the performance can physically represent
regulation, tracking, and/or disturbance rejection prob-
lems.

In general, any suitable multivariable design ap-
proach can be used to generate a substructure robust
controller. References [7, 19] describe several control
design approach including parameter optimization via
nonlinear programming. In this paper, we consider the
robust performance measure in terms of the structured
singular value. The problem then reduces to minimizing
� (see for example [20, 21, 22, 23]).

4 Substructure Interface

In this section, a model of a substructure interface is
developed for the purpose of formulating the coupled
SRCP.

4.1 Static Interface

Consider the structural interconnection between two
substructures. Denote those DOF at the interface
boundaries for the two substructures by superscripts (1)

and (2), and the sti�ness interfaces denoted by super-

script (I). The variables �(1)b1 ; :::; �
(1)
bm denote the DOF at

the interface for substructure 1 while �
I=(1)
b1 ; :::; �

I=(1)
bm

denotes the structural interface DOF adjoining sub-

structure 1. Similarly, the variables �(2)b1 ; :::; �
(2)
bm cor-

respond to the DOF at the interface for substructure 2

while �I=(2)b1 ; :::; �
I=(2)
bm denotes the DOF at the adjoining

interface structure. The interface sti�ness matrix, SI ,
is de�ned as follows

SI
�
�I=(1)

�I=(2)

�
=

�
fI=(1)

fI=(2)

�
(18)

where all the variables without subscripts denote vec-
tor representation of corresponding DOF. As in any
sti�ness matrtix, the (i; j)th element of SI physically

represents the force (or moment) at DOF i due to a unit
displacement (or rotation) at DOF j. In the general
case where there are DOF internal to the interface
substructure itself, the interface sti�ness matrix in the
boundary input/output form, as in Eq.(18), can be
obtained by a static condensation procedure [24].

As an example of a static substructure interface,
consider the attachment of a exible aircraft wing to
its fuselage as shown in �gure 3. A narrow strip of
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Figure 3: Structural interface between a wing and its
fuselage.

structure located between the wing and the fuselage
can be seperately modeled by �nite-elements just as is

done for the main substructures. �
I=(k)
m denotes the

mth �nite-element DOF at the physical node shared by
the substructure interface and kth substructure. The
interface sti�ness for this example relates the interface
displacements, forces, and rotations, moments, in the
same way as Eq.(18) if we let the superscripts, (1) and
(2) denote the fuselage and wing respectively.

From a controls perspective, the interface sti�ness
can be viewed as a collocated, constant gain output
feedback of the displacements and rotations at the
substructure interface to the forces and moments on
the same substructure interface. Figure 4 show this

-I SI

forces/moments
on substructures

forces/moments
on interface

disp/rot
at interface

Figure 4: Substructure interface block diagram

constant gain feedback block given in terms of forces
and moments on the substructures. Note that since the
forces (and moments) in the right hand side of Eq.(18)
are the forces (and moments) acting on the sti�ness
interface, the reaction forces (and moments) on the
substructures will be in opposite directions.



4.2 Varying/Uncertain Interface

In the event that the substructure interface is uncertain
and/or varying, the coupling block can be viewed
as a constant linear uncertainty with speci�ed norm
bounds. One approach is to model the uncertainty as
an independent variation in the interface forces about
a nominal sti�ness, so.

For sti�ness interface let the variation in the in-
terface sti�ness be modeled by the following equation
between the substructure boundary displacements (and

rotations) (�
(1)
b ; �

(2)
b ), and the corresponding forces (and

moments) (g1; g2) on the substructures at the bound-
aries�

g1
g2

�
= s

(
�
(1)
b

�
(2)
b

)
(19)

where

s = �( + ��)SI (20)

denotes the e�ective interface sti�ness while �; �;  are
parameters which are de�ned as follows:

j�ij � 1; i = 1; . . . ;#boundaryDOF (21)

�i = �ui (22)

The parameter  is a factor appearing in the nominal
interface sti�ness

so = �SI (23)

Notice that when  = 0 is selected, it means that
the nominal interface sti�ness is zero. However, this
do not necessarily imply that the substructures are
uncoupled. The combined term, �� denotes the factor
of interface sti�ness variation about the nominal. �ui
denotes the upper limit of change in the ith channel.
Note that the ith channel physically corresponds to the
ith interface DOF. Figure 5 shows in block diagram

Σ

β α

γ -SIg1

g2

z1
z2

Figure 5: Interface sti�ness uncertainty/variation

form the e�ective interface sti�ness parameterized as a
structured uncertainty.

4.3 Dynamic Interface

So far we assumed a static model in the form of a
sti�ness coupling and a substructure interface sti�ness
matrix is formally de�ned. In principal, the interface
sti�ness matrix can be extended to a transfer function
matrix which maps the dynamic displacements and
rotations at the interface to the corresponding interface
forces and moments. In other words, an inverse kine-
matics model can be developed whereby the kinematic
variables (displacements, velocities and accelerations)
at the DOFs adjacent to the substructures are mapped
into the corresponding forces and moments.

Similar to the static sti�ness interface case, the
dynamic interface block could be extended to include
certain or uncertain dynamic models. As an example,
the interface dynamics associated with a remote manip-
ulator arm between the orbiter and the space station
(�gure 1) could be modeled as a exible substructure
with its own nominal model and uncertainty. More
interestingly, it may be su�cient to treat the complex
variations due to a slow con�guration change in the
manipulator arm during docking or when grabing a
payload, as a set of plants not di�erent from uncertainty
descriptions.

5 Coupled SRCP

In this section, the substructure interface model is
combined with the uncoupled SRCP to form a coupled
SRCP. It is important to note that a single synthesized
model is not formed by removing the interface DOF
to predict system frequencies and mode shapes as is
traditionally done in component modes synthesis (see
for example [15, 16]).

The two substructures connected by a sti�ness in-
terface can be represented graphically in block diagram
form as shown in �gure 6. The control objective remains
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∆
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Figure 6: Sti�ness coupled SRCP for two substructures.

the same as the uncoupled SRCP, i.e. to optimize
disturbance rejection performance under substructure
model uncertainties. However, the objective for coupled
SRCP becomes more complicated due to the substruc-
ture coupling which may also be slowly varying and/or
even uncertain. The disturbance rejection performance
is in the form of a frequency weighted H1 norm, of the
transfer function matrix from the disturbances, r1, r2
to outputs of interest e1, e2. The disturbance rejection
performance is to be guaranteed under all modeled
uncertainties.

Figure 7 shows a general interconnected substruc-
tures. The system plant, P , consists of nominal
substructure models, P1, P2, . . ., while the system
uncertainty, �, consists of individual substructure un-
certainties, �1, �2, . . .. The system controller, K,
consists of substructure controllers, k1, k2, . . .. A block-
diagonal substructure interface however couples the
nominal substructures, component uncertainties and
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Figure 7: General Coupled SRCP.

substructure controllers. The width dimension of the
block diagonality of interface coupling is dependent on
the degree of physical coupling and topology of the
interconnections. Notice that even if each of the sub-
structure and interface uncertainties are unstructured,
globally, the uncertainties will be highly structured.
This is the basis for applying structured singular value
techniques (see for example [20, 21, 22, 23]) for robust
performance controller design in this study.

5.1 Decentralized Control

Figure 7 shows the decentralized nature of the plant,
uncertainty, and controller. The decentralized con-
troller structure (see for example [25, 26, 27]) is enforced
by the classical loop-at-a-time design, namely, design
a substructure controller while holding the remaining
substructure controllers constant. Figure 8 shows the
�rst two steps of the design sequence to incorporate
both robustness and decentralization of the overall
system for a system with two substructures.

The �rst step involves the design of substructure
controller, k1, while assuming open loop for substruc-
ture 2. At this step, the nominal dynamics of the sub-
structure 2 is included while the component uncertainty
and performance for the remaining substructure 2 are
ignored. Ignoring the adjacent component's uncertainty
and performance is crucial to obtain a reasonable
performance controller for substructure 1 because of
the localized constraint on substructure controller 1.
Accounting for nominal substructure 2 should result in
substructure controller 1 which takes into account the
primary coupling e�ects of the neighboring substruc-
ture.

In the second step, the controller for substruc-
ture 2, k2, is designed by holding the controller for
substructure 1, k1, constant. The �xed controller k1
should strongly complement controller k2 in the control
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Figure 8: Design sequence for robust decentralization

of substructure 2. At this step, all uncertainties and dis-
turbances with the corresponding errors are included.
This essentially guarantees performance robustness of
the overall system.

Step 3 is similar to step 2 except substructure con-
troller 2 is held constant while substructure controller 1
is re�ned. Step 4 is the same as step 2 and the sequence
follows. For this design example, iterations up to step 3
are carried out for the decentralized control design. In
the sequential design process described above, the order
of the controller will increase with each iteration if the
control design technique chosen results in a controller
of the same order as the current augmented plant (such
as LQG or central H1). Hence, model order reduction
is recommended after each step.

5.2 Design via � Synthesis

The disturbance rejection performance from r to e
in terms of frequency weighted H1 norm is to be
guaranteed (or be robust) with respect to a bounded
and structured set of component uncertainties, �1, �2,
and interface uncertainty, �s. The controller can be
centralized or decentralized as outlined in the previous
section. The worst case (over frequency) � quanti�es
the degree of robust performance. Designing controllers
by �-synthesis involves an iterative minimization of
the upper bound using H1 methods. The underlying
theory which forms the basis of this method is discussed
in detail in [23, 28, 29, 30].

The �-design problem is summarized as follows:

minimize

K;D

kDFl(P;K)D�1k1
(24)

where fK : Fl(P;K) 2 H1g; D 2 D. The set
of scaling matrices, D, has a similar structure as �
(the structured uncertainty matrix) with an appended
identity matrix. The terms, Fl, P , and K, denote
the lower linear fractional transformation, augmented
plant, and the controller, respectively. To minimize
the weighted H1 norm in Eq. 24, the D-K iteration



technique is used. In this approach,D orK is optimized
independently and sequentially. Optimizing forD while
keeping K �xed involves the search for the minimal
upper bound on �, whereas, optimizing for K while
�xing D involves the minimization of an approximation
of � itself. Although this approach is iterative in nature
and convergence to a global minimumis not guaranteed,
recent numerical studies show excellent convergence
(see for example [21, 31, 32]). The Glover-Doyle
algorithm [33, 34] is used to solve the H1 problem. The
MATLAB toolbox, �-Tools [22] is used for the analysis
and synthesis of the controllers.

6 Example

6.1 Description of Structure

Motivated by earlier work on substructure and com-
ponent mode synthesis, a beam which is cantilevered
at both ends is used to illustrate the ideas introduced
in this paper. The structure is assumed to consist of
two cantilevered Euler-Bernoulli beams joined at the
free ends by a short sti�ness interface beam element as
shown in �gure 9.

Substructure 1
(20 elements)

1z 2z
Interface stiffness

(1 element)

Substructure 2
(10 elements)

g
1

e1u1r1 y1

2y e
2 u2 r2

g
2

Figure 9: Joined cantilever beams

The structural properties and con�gurations of
the beams are given in table 1. The sti�ness and

Property Substr 1 Substr Inter Substr 2

length 2 .2 1
mass density (�) 10 .1 10
sti�ness (EI) 10�2 10�4 10�2

No. of elements 20 1 10

Table 1: Structural Properties and Con�guration

mass density properties are selected such that the
resonant frequencies are su�ciently spaced, and the
lower frequencies to be controlled are su�ciently small
to allow reasonable numerical integration. No deep
signi�cance should be attributed to the choice of the
numerical values in table 1 since this is obviously a
contrived example to clarify the proposed approach.
The beam substructures modeled by 20 and 10 beam
elements resulted in 40 and 20 structural modes. The
full state space models of the two substructures are then

of orders 80 and 40, respectively. The interface sti�ness
is modeled by a single beam element with four DOF.

The connected structure has 60 structural modes
from the total of 31 beam elements. A truncated
structural model consisting of the lowest 30 structural
modes is used as the evaluation model and �gure 10
show the maximum and minimum singular values of
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Figure 10: Frequency response of evaluation model

the frequency response matrix from r1, r2, to e1, e2.
Notice that there is no clear frequency gap where model
reduction by modal truncation can be done. It is also
clear from the �gure that the displacement responses
rapidly drop as a function of frequency; this is the
basis for modal truncation of higher frequency modes
in addition to the well known inaccuracy of the �nite
element model in predicting the dynamics at higher
frequencies.

6.2 Control Design

6.2.1 Objective

The control objective for this problem is to optimize
disturbance rejection performance. In particular, a
minimal desired upper bound of frequency weighted
H1 norm, of the transfer function matrix from the
disturbances, r1, r2 to outputs of interest e1, e2, is
to be guaranteed under truncated component modes
and uncertainties and/or variations in the substructure
interface. To optimize the robust performance, �
synthesis is used.

6.2.2 Design Con�guration

The overall system block diagram is shown in �g-
ure 11. The two nominal component modes model,
(G1,G2), with their corresponding high frequency trun-
cated modes which are treated as substructure un-
certainties (�1W1, �2W2), are shown. The respec-
tive substructure disturbances, (r1,r1), and outputs of
interests, (e1,e2), are also distinguished. The power
spectrum of the disturbances are represented by Wr1 ,
and Wr2 which frequency weights the all-pass input
disturbances. The output error weighting matrices,
We1 , and We2 were chosen as unity but in general may
be chosen to signify its relative importance with respect
to other requirements. The unstructured uncertainty
blocks, �1, �2, and diagonally structured interface
sti�ness uncertainty block [�], are assumed to be ampli-
tude bounded by unity 2-norm. The interface sti�ness
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Figure 11: Block diagram for control design

block couples the substructures and acts like a constant
gain feedback. The controller shown in �gure 11 are
centralized and are used for performance comparisons.
Substructure decentralization is de�ned by k12 = k21 =
0. Figure 12 shows the augmented plant, P , which

unc substr 2

unc substr 1

stiffness 
interface

substr 2 
 meas 

substr 1 
meas 

unc substr 2

unc substr 1

stiffness
interface

substr 1 
disturb

substr 1 
contr inp 

substr 2 
contr inp 

substr 2 
disturb

substr 1
output

substr 2
output

P

Augmented
Plant

Figure 12: Augmented Plant for � synthesis

includes all performance and uncertainty weights.

6.2.3 Design Weights for SRCP

For all cases, only the lowest 8 modes (16 states)
for substructure 1 and lowest 4 modes (8 states) for
substructure 2 are targeted for control while the rest
of the component modes (32 and 16 modes for sub-
structures 1 and 2) are treated as additive uncertainties.
These are \normal"modes from substructure cantilever
boundary conditions. No attempt is made to improve
the reduced component modes (nominal) model by
adding constraint modes or component shape functions
to approximate the residual exibility. As is typical of
exible structures, most higher frequency component
modes are truncated. Figures 13 show the maximum
singular value of the transfer function matrix of the
truncated higher frequency component modes (solid)
and a stable, real-rational, second-order weight function
used as its upper bound (dotted) for both substructures.
The weights representing upper bounds for substructure
uncertainties have the realization:

W1 =

0
BB@

�2:8622 �7:5077 j �0:6458
7:5077 �2:1794 j 0:4064

0:6458 0:4064 j 0:0735

1
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W2 =

0
BB@

�5:0127 �7:1225 j �0:7768
7:1225 �2:8930 j 0:3537

0:7768 0:3537 j 0:0819

1
CCA (26)

The output weights, We1 , and We2 , (dash-dot) are
chosen as unity. The �gures also show a �rst-order fre-
quency weighting function (dashed), Wr1 , Wr2 , where

Wri =
s + 1000

s+ 2
� :008 i 2 [1; 2] (27)

which is representative of the disturbance spectra at r1
and r2. They are chosen to reject external disturbances
at lower frequencies (� 2 rad/sec).

6.3 Case Studies

Five cases are considered to illustrate the utility of the
analysis and design framework based on substructure
models as listed in Table 2. The cases are listed in

Case # Structure Interface Controller

1  = 0; � = 0 k12 = k21 = 0
2  = 1; � = 0 centralized
3  = 1; � = 0 k12 = k21 = 0
4  = 1; j�j � 1 centralized
5  = 1; j�j � 1 k12 = k21 = 0

Table 2: Design con�gurations (� = 1)

increasing order of design di�culty. In this table,  = 0
refers to zero nominal sti�ness while � refers to the
variation in the interface sti�ness. The terms kij, i; j 2
[1; 2] refer to the controller component that maps the
measured outputs from substructure j to control inputs
of substructure i.

6.3.1 Uncoupled SRCP, = � = 0 (Case 1)

This is the limiting case in performance and simplicity
since the subsystems are completely uncoupled. The
higher frequency truncated modes of the two substruc-
tures are the only model uncertainties assumed in this
problem. The weighted frequency response plots in
�gures 14 show that disturbances are rejected very well
at the low frequencies by two orders of magnitude over
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Figure 14: Frequency response for open loop (dotted)
and closed-loop for controller 1 (solid),  = � = 0

the open loop response while avoiding spillover. The
weighted open and closed loop frequency responses were
calculated using the full model (80 and 40 states) for the
substructures. Since the substructures are uncoupled
( = � = 0) and the controller is decentralized for this
case, there is no cross coupling response. The �gures
also show a at weighted closed-loop frequency response
which is characteristic of optimal H1 controller re-
sponse. In the transition bandwidths between the onset
of performance rollo� (� 2 rad/sec) and the onset of
additive uncertainties (� 7 rad/sec for substructure 1
and 2), rapid performance decay occurs.

6.3.2 Coupled SRCP,  = 1, � = 0 (Cases 2,3)

This con�guration assumes a known �xed sti�ness in-
terface ( = 1, � = 0) between the two substructures.
As in case 1, the higher frequency truncated component
modes are the only model uncertainties assumed in this
problem. The controller in case 2 is centralized while
the controller in case 3 is decentralized. Only steps
1 and 2 of the sequential design was implemented for
designing the decentralized robust controller in case 3.
Controller order reduction at each step was done via
balanced realization [35] for case 3.

Figure 15 shows the weighted closed-loop frequency
responses from the combined disturbances to the out-
puts of interest when the structure is connected ( =
1,� = 0). A full model of the connected structure
consisting of the �rst 30 modes were used in the
open and closed loop frequency response. The open
loop response (dotted) is shown for reference. At low
frequencies, both controllers show excellent disturbance
attenuation. Due to the controller constraint for case
3 (solid), a performance degradation is signi�cant,
especially in the transition bandwidth.

The closed loop response for the decentralized
controller also show strong coupling between distur-
bances from one substructure to response of the other
although the controller itself is uncoupled. This im-
plies signi�cant structural coupling as evidenced by
the magnitude of the o�-diagonal open-loop response.
This is surprising since the nominal sti�ness of the
coupling section is two orders of magnitude less sti�
than an equivalent length main substructure (see table
1). In fact, cantilever beams have large excitability and
detectability at the free ends due to the dominating
fundamental structural mode response. When the two
free ends are connected, even with a \soft" interface
sti�ness, the system is highly coupled as just described.
Therefore, although the relative numerical values of
interface coupling sti�ness may indicate weak coupling,
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Figure 15: Frequency response for Cases 2 (dashed) and
3 (solid),  = 1, � = 0; open loop (dotted)

it is clear from the cross-terms that it is not for this
particular example.

6.3.3 Coupled SRCP,  = 1, j�j � 1 (Cases 4,5)

This con�guration is the same as cases 2 and 3 except
that the substructure interface sti�ness is assumed to be
uncertain and/or variable over a known range (j�j � 1).
The uncertainty in the interface sti�ness is assumed to
vary about a nominal of  = 1 which gives the nominal
interface sti�ness

so =

2
664

�0:3 �0:3 0:3 �0:3
�0:3 �0:4 0:3 �0:2
0:3 0:3 �0:3 0:3
�0:3 �0:2 0:3 �0:4

3
775 (28)

The nominal sti�ness can be viewed as an intermediate
sti�ness condition between a fully coupled interface and
where the two substructures are structurally uncoupled.
From a physical standpoint, cases 4 and 5 are especially
interesting because it covers the conditions before (� =
�1), during (�1 < j�j < 1) and after (j�j = 1)
docking using �xed (spatially decentralized for case
5) controllers. Steps 1 to 3 of the sequential design
was implemented for designing the decentralized robust
controller in case 5. Controller order reduction at each
step was also done via balanced realization.

Figure 16 shows the weighted frequency response
at nominal sti�ness where � = 0. The open loop
weighted frequency response (dotted) is also shown
for reference. Both controllers 4 and 5 gives good
disturbance rejection at low frequencies but at transient
and higher frequencies, the decentralized controller
signi�cantly loses performance due to its controller
constraint. The �gure also show that the cross response
(e1=r2 and e2=r1) is similar in magnitude to the local
response (e1=r1 and e2=r2) even when the controller is
decentralized for case 5.
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Figure 16: Frequency response for Cases 4 (dashed) and
5 (solid); open loop (dotted)

6.3.4 Sensitivity to Interface Sti�ness

The variations with � in the largest real component of
the closed loop eigenvalues for all �ve controllers are
shown in �gure 17. A negative largest real component
indicates stability and the �gure shows the approximate
range of interface sti�ness variation over which the
closed loop system remains stable using the evaluation
model. Only controllers 4 and 5 are designed to ac-
comodate speci�ed variations in the interface sti�ness.
As expected, controller 1 (x) remains stable in a small
neighborhood about � = �1 when the substructures
are completely uncoupled. Controller 2 (�) remains
stable in a small skewed neighborhood about � = 0.
Controller 3 (- -), which is the same as controller 2
except with decentralized control, gives a larger and
more even neighborhood of stability than controller 2.
Controller 4 (� � �) is the only controller that guarantees
robust stability over the whole range of �. With
decentralization, controller 5 (- .) gives a smaller region
of robustness than controller 4 but is still signi�cantly
larger than controllers 2 and 3.

Figure 18 shows the variation in the magnitude
of the unweighted frequency response from input r1
to output e1 due to a change in interface sti�ness for
 = 1, and � = (�:4; 0; :4). The open loop frequency
response variation of the evaluation model is shown in
�gure 18(a) for reference. The changes in the interface
sti�ness signi�cantly a�ect the frequency response of
the structure over a wide frequency. Controller 1 was
unstable for all three � values considered and is not
shown. Controllers 2 and 3 were closed loop unstable
at � = �:4 and :4 and only the stable � = 0 case is
shown (dotted). Controllers 4 and 5 were closed loop
stable for all three � values. This is not unexpected
since they were the only controllers that accounted for
the variation in the interface sti�ness. Controller 4 gives
the smallest variation (the three lines almost overlap)
in the frequency response and is the most robust as
expected.

Figure 19 show the dependence of the disturbance
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Figure 17: Variation in largest real component of closed
loop eigenvalue with �; open loop (o), controller 1(x),
2(�), 3(- -), 4(� � �), 5(- .)

rejection performance (measured in terms of RMS er-
ror) on interface sti�ness. The left, center, and right
bar plot for each controller show the RMS value for
� = �:4; 0; :4, respectively. Unstable responses are
denoted by 0:1 RMS error in the �gure. The RMS
errors for controllers 4 and 5 show only a small variation
over the range of sti�ness. There is a noticable drop
in RMS performance for controller 5 due to controller
decentralization. The nominal performance (at � = 0)
for controller 2 and 3 are slightly better than controller
4 and 5. This demonstrates the tradeo� in nominal per-
formance for robustness over a larger set of structural
con�gurations in the latter cases.

7 Concluding Remarks

There is currently no established means to quantita-
tively account for model errors or uncertainties for
a set of reduced component mode models. In re-
sponse, a modularized control design framework has
been proposed such that substructure data can be
utilized directly. This development could prove useful
because it takes advantage of the existing signi�cant
body of results in substructure modeling of large ex-
ible structures. Although substructure controllers are
highlighted, centralized controllers can also be directly
designed from substructure data. In addition, synthesis
of the substructures, as is usually done in component
modes synthesis, is not necessary for control design.

Although the numerical examples are based on a
one dimensional structural system and is designed only
to illustrate the proposed concept, it demonstrates a
direct way to incorporate nominal substructure models
and their corresponding uncertainties along with the
substructure interface dynamics. The examples show
that variations in the interface sti�ness strongly a�ects
stability and disturbance rejection performance. A
small loss in nominal performance can be traded-o�
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Figure 18: Variation in frequency response (e1=r1) with
interface sti�ness,  = 1, � = �:4 (solid), 0 (dotted),
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for a signi�cant gain in robustness. The results also
demonstrate the feasibility of designing decentralized
robust controllers by a sequential process although
decentralization signi�cantly reduced performance. Of
course in the limiting case of uncoupled substructures,
centralized controllers cannot be any better than decen-
tralized controller.

Due to the 1-g testing environment, it may not be
possible to test an assembled large exible structure on
the ground so that some comprehensive form of on-orbit
system identi�cation is critical. Since substructures
can typically be tested independently in the laboratory,
it is in principle possible to develop through testing
component uncertainty models arising from inaccurate
or reduced component modes and inconsistencies in
the substructure boundary conditions. Perhaps the
main advantage then in the proposed technique is in
the reduction of the dependence on on-orbit system
identi�cation of the assembled structure by an easier
and less costly testing of substructures on the ground.
In addition, control designs that are based on a single
model of the assembled structure cannot be experi-
mentally validated on ground. These controllers would
depend on nominal and uncertainty models that cannot
be experimentally developed or validated.
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Figure 19: RMS error dependence on interface sti�ness
� = �:4(left), 0(center), :4(right)

The technique is particularly suited for large, com-
plex, exible structures that are weakly coupled. The
degree of weakness in the coupling should exceed a
threshold such that its overall stability cannot be guar-
anteed if decentralized controllers are designed indepen-
dently or if its adjoining substructures are accounted
for inaccurately. In addition, performance limitations
due to controller decentralization should be signi�cant.
In practice however, logistical constraints may make it
impossible to implement a centralized controller.

Several important aspects of the coupled substruc-
ture robust control problem that are not adequately
addressed and are open for further research include:
modeling substructural interfaces beyond static sti�-
ness, optimal substructure model reduction, role of
errors in the low frequency modes of the subsystems,
quanti�cation of the degree of suboptimality of the
decentralized design.
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